Package: scMappR (via r-universe)

September 2, 2024

Title Single Cell Mapper

Version 1.0.11

Description The single cell mapper (scMappR) R package contains a suite of bioinformatic tools that provide experimentally relevant cell-type specific information to a list of differentially expressed genes (DEG). The function ``scMappR_and_pathway_analysis" reranks DEGs to generate cell-type specificity scores called cell-weighted fold-changes. Users input a list of DEGs, normalized counts, and a signature matrix into this function. scMappR then re-weights bulk DEGs by cell-type specific expression from the signature matrix, cell-type proportions from RNA-seq deconvolution and the ratio of cell-type proportions between the two conditions to account for changes in cell-type proportion. With cwFold-changes calculated, scMappR uses two approaches to utilize cwFold-changes to complete cell-type specific pathway analysis. The ``process dgTMatrix lists" function in the scMappR package contains an automated scRNA-seq processing pipeline where users input scRNA-seq count data, which is made compatible for scMappR and other R packages that analyze scRNA-seq data. We further used this to store hundreds up regularly updating signature matrices. The functions ``tissue by celltype enrichment", ``tissue scMappR internal", and ``tissue_scMappR_custom" combine these consistently processed scRNAseq count data with gene-set enrichment tools to allow for cell-type marker enrichment of a generic gene list (e.g. GWAS hits). Reference: Sokolowski, D.J., Faykoo-Martinez, M.,

mts). Reference: Sokolowski,D.J., Faykoo-Martinez,M., Erdman,L., Hou,H., Chan,C., Zhu,H., Holmes,M.M., Goldenberg,A. and Wilson,M.D. (2021) Single-cell mapper (scMappR): using scRNA-seq to infer cell-type specificities of differentially expressed genes. NAR Genomics and Bioinformatics. 3(1). Iqab011. <doi:10.1093/nargab/lqab011>.

Depends R (>= 4.0.0)

Imports ggplot2, pheatmap, graphics, Seurat, GSVA, stats, utils, downloader, pcaMethods, grDevices, gProfileR, limSolve,

Contents

gprofiler2, pbapply, ADAPTS, reshape,

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

Suggests testthat, knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation no

Author Dustin Sokolowski [aut, cre], Mariela Faykoo-Martinez [aut], Lauren Erdman [aut], Houyun Hou [aut], Cadia Chan [aut], Helen Zhu [aut], Melissa Holmes [aut], Anna Goldenberg [aut], Michael Wilson [aut]

Maintainer Dustin Sokolowski <djsokolowski95@gmail.com>

Date/Publication 2023-06-30 08:40:08 UTC

Repository https://dsokolo.r-universe.dev

RemoteUrl https://github.com/cran/scMappR

RemoteRef HEAD

RemoteSha 43e80e29770b26cfa5a4966e3946da9b83e90359

Contents

cellmarker_enrich
coEnrich
compare_deconvolution_methods
cwFoldChange_evaluate
DeconRNAseq_CRAN
deconvolute_and_contextualize
extract_genes_cell
generes_to_heatmap 14
get_gene_symbol
get_signature_matrices
gmt
gProfiler_cellWeighted_Foldchange 17
gsva_cellIdentify 18
heatmap_generation
human_mouse_ct_marker_enrich
make_TF_barplot
pathway_enrich_internal
PBMC_example
plotBP
POA_example
process_dgTMatrix_lists
process_from_count

scMappR_and_pathway_analysis	32
scMappR_tissues	34
seurat_to_generes	35
single_gene_preferences	36
sm	37
tissue_by_celltype_enrichment	38
tissue_scMappR_custom	39
tissue_scMappR_internal	40
tochr	42
toNum	43
topgenes_extract	44
two_method_pathway_enrichment	45
	47

Index

cellmarker_enrich Fisher's Exact Cell-Type Identification.

Description

This function uses the CellMarker and Panglao datasets to identify cell-type differentially expressed genes.

Usage

```
cellmarker_enrich(
  gene_list,
  p_thresh,
  gmt = "cellmarker_list.Rdata",
  fixed_length = 13000,
  min_genes = 5,
  max_genes = 3000,
  isect_size = 3
)
```

Arguments

gene_list	A character vector of gene symbols with the same designation (e.g. mouse symbol - mouse, human symbol - human) as the gene set database.
p_thresh	The Fisher's test cutoff for a cell-marker to be enriched.
gmt	Either a path to an rda file containing an object called "gmt", which is a named list where each element of the list is a vector of gene symbols website for more detail on the file type (https://software.broadinstitute.org/cancer/software/gsea/wiki/index.php/Data_form The gmt list may also be inputted.
fixed_length	Estimated number of genes in your background.
<pre>min_genes</pre>	Minimum number of genes in the cell-type markers.
<pre>max_genes</pre>	Maximum number of genes in the cell-type markers.
<pre>isect_size</pre>	Number of genes in your list and the cell-type.

Details

Complete a Fisher's exact test of an input list of genes against a gene set saved in an *.RData object. The RData object is storing a named list of genes called "gmt".

Value

cellmarker_enrich Gene set enrichment of cell-types on your inputted gene list.

Examples

coEnrich

Identify co-expressed cell-types

Description

This function identifies genes with similar cell-type markers and if those markers are driving enrichment.

Usage

```
coEnrich(
   sig,
   gene_list_heatmap,
   background_heatmap,
   study_name,
   outDir,
   toSave = FALSE,
   path = NULL
)
```

coEnrich

Arguments

sig	A The number of combinations of significant cell-types to enrich.	
gene_list_heatmap		
	Signature matrix of inputted genes in heatmap and the cell-type preferences – output of heatmap generation.	
background_heat	map	
	Signature matrix of background matrix in heatmap and cell-type preferences – output of heatmap generation.	
study_name	Name of the outputted table.	
outDir	Name of the directory this table will be printed in.	
toSave	Allow scMappR to write files in the current directory (T/F).	
path	If toSave == TRUE, path to the directory where files will be saved.	

Details

This function takes significantly enriched cell-types from the single CT_enrich before testing to see if the genes driving their enrichment are overlapping to a significant proportion using Fisher's exact test. To save computational time and to not complete this with an incredible number of permutations, scMappR stops at overlapping 5 cell-types.

Value

coEnrich Enrichment of cell-types that are expressed by the same genes, up to 4 sets of cell-types.

Examples

```
# load in signature matrices
data(POA_example)
POA_generes <- POA_example$POA_generes
POA_OR_signature <- POA_example$POA_OR_signature
POA_Rank_signature <- POA_example$POA_Rank_signature
sig <- get_gene_symbol(POA_Rank_signature)
Signature <- POA_Rank_signature
rownames(Signature) <- sig$rowname
genes <- rownames(Signature)[1:60]
heatmap_test <- tissue_scMappR_custom(gene_list = genes, signature_matrix = Signature,
output_directory = "scMappR_test", toSave = FALSE)
group_preferences <- heatmap_test$group_celltype_preferences</pre>
```

compare_deconvolution_methods

compare_deconvolution_methods

Description

This function calculates cell-type proportions of an inputted bulk sample using DeconRNA-seq, WGCNA, and DCQ methods. Outputted cell-type proportions are then compared.

Usage

```
compare_deconvolution_methods(
   count_file,
   signature_matrix,
   print_plot = FALSE,
   order_celltype = NULL,
   useWGCNA = TRUE
)
```

Arguments

count_file	Normalized (CPM, TPM, RPKM) RNA-seq count matrix where rows are gene symbols and columns are individuals. Either the object itself of the path of a .tsv
	file.
signature_matri	X
	Signature matrix (odds ratios) of cell-type specificity of genes. Either the object itself or a pathway to an .RData file containing an object named "wilcoxon_rank_mat_or" - generally internal.
print_plot	print the barplot of estimated cell-type proportions from each method into the R console (logical: TRUE/FALSE)
order_celltype	Specify the order that cell-type are placed on the barplot. NULL = alphabeti- cal, otherwise a character vector of cell-type labels (i.e. column names of the signature matrix).
useWGCNA	specify if WGCNA is installed = TRUE/FALSE.

Value

List with the following elements:

cellWeighted_Fo	ldchange
	data frame of cellweightedFold-changes for each gene.
cellType_Propor	tions
	data frame of cell-type proportions from DeconRNA-seq.
<pre>leave_one_out_p</pre>	roportions
	data frame of average cell-type proportions for case and control when gene is removed.
processed_signature_matrix	
	signature matrix used in final analysis.

cwFoldChange_evaluate

Examples

```
data(PBMC_example)
norm_counts <- PBMC_example$bulk_normalized
signature <- PBMC_example$odds_ratio_in
tst <- compare_deconvolution_methods(count_file = norm_counts,
    signature_matrix = signature, print_plot = FALSE,
    order_celltype = c("I_mono", "C_mono", "CD8_CM", "CD8_TE",
    "B_SM", "B_NSM", "B_naive"), useWGCNA = FALSE)</pre>
```

cwFoldChange_evaluate Measure cell-type specificity of cell-weighted Fold-changes

Description

This function normalizes cwFold-changes by each gene to help visualize the cell-type specificity of DEGs. It then tests if a cell-type has a large change in correlation from bulk DEGs. Finally, it identifies genes that may be specific to each cell-type.

Usage

```
cwFoldChange_evaluate(
   cwFC,
   celltype_prop,
   DEG_list,
   gene_cutoff = NULL,
   sd_cutoff = 3
)
```

Arguments

cwFC	A matrix or data frame of cell-weighted fold-changes of DEGs. Rows are DEGs and columns are cell-types.
celltype_prop	A matrix or data frame of cell-type proportions. Rows are different cell-types and columns are different samples. These cell-type proportions can come from any source (not just scMappR).
DEG_list	An object with the first column as gene symbols within the bulk dataset (doesn't have to be in signature matrix), second column is the adjusted p-value, and the third the log2FC path to a .tsv file containing this info is also acceptable.
gene_cutoff	Additional cut-off of normalized cwFold-change to see if a gene is cut-off.
sd_cutoff	Number of standard deviations or median absolute deviations to calculate out- liers.

Details

cwFold-changes and re-normalized and re-processed to interrogate cell-type specificity at the level of the cell-type and at the level of the gene. At the level of the cell-type, cwFold-changes are correlated to bulk DEGs. The difference in rank between bulk DEGs and cwFold-changes are also compared. At the level of the gene, cwFold-changes are re-normalized so that each gene sums to 1. Normalization of their distributions are tested with a Shapiro test. Then, outlier cell-types for each gene are measured by testing for 'sd_cutoff's mad or sd's greater than the median or mean depending on if the cwFold-change is non-normally or normally distributed respectively. Cell-types considered outliers are then further filtered so their normalized cwFold-changes are greater than the cell-type proportions of that gene and 'gene_cutoff' if the user sets it.

Value

List with the following elements:

gene_level_investigation

data frame of genes showing the Euclidian distances between cwFold-change and null vector as well as if cwFold-changes are distributed.

celltype_level_investigation

data frame of Spearman's and Pearson's correlation between bulk DEGs and cwFold-changes.

cwFoldchange_vs_bulk_rank_change

data frame of the change in rank of DEG between the bulk fold-change and cwFold-change.

cwFoldChange_normalized

cwFold-change normalized such that each gene sums to 1.

cwFoldchange_gene_assigned

List of cell-types where genes are designated to cell-type specific differential expression.

cwFoldchange_gene_flagged_FP

Mapped cwFoldchanges that are flagged as false-positives. These are genes that are driven by the reciprical ratio of cell-type proportions between case and control. These genes may be DE in a non-cell-type specific manner but are falsely assigned to cell-types with very large differences in proportion between condition.

Examples

8

```
DEG_list = DE)
```

DeconRNAseq_CRAN DeconRNASeq CRAN compatible

Description

This function runs DeconRNAseq with default parameters such that it is compatible with CRAN and scMappR

Usage

```
DeconRNAseq_CRAN(
   datasets,
   signatures,
   proportions = NULL,
   checksig = FALSE,
   known.prop = FALSE,
   use.scale = TRUE,
   fig = FALSE
)
```

Arguments

datasets	Normalized RNA-seq dataset
signatures	Signature matrix of odds ratios
proportions	If cell-type proportion is already inputted - always NULL for scMappR
checksig	Check to see if plotting is significant - always false for scMappR
known.prop	If proportions were known - always false for scMappR
use.scale	Scale and center value - always TRUE for scMappR
fig	Make figures - always FALSE for scMappR

Details

This is the exact same function as the primary function in the Bioconductor package, DeconRNAseq (PMID: 23428642) except it is now compatible with CRAN packages.

Value

DeconRNAseq_CRAN Estimated cell-type proportions with DeconRNAseq.

Examples

deconvolute_and_contextualize

Generate cell weighted Fold-Changes (cwFold-changes)

Description

This function takes a count matrix, signature matrix, and differentially expressed genes (DEGs) before generating cwFold-changes for each cell-type.

Usage

```
deconvolute_and_contextualize(
  count_file,
  signature_matrix,
 DEG_list,
  case_grep,
  control_grep,
 max_proportion_change = -9,
 print_plots = TRUE,
  plot_names = "scMappR",
  theSpecies = "human",
  FC_coef = TRUE,
  sig_matrix_size = 3000,
  drop_unknown_celltype = TRUE,
  toSave = FALSE,
  path = NULL,
 deconMethod = "DeconRNASeq",
  rareCT_filter = TRUE
)
```

Arguments

count_file	Normalized (e.g. CPM, TPM, RPKM) RNA-seq count matrix where rows are gene symbols and columns are individuals. Either the matrix itself of class "matrix" or data.frame" or a path to a tsv file containing these DEGs. The gene symbols in the count file, signature matrix, and DEG list must match.
signature_matr:	ix
	Signature matrix (fold-change ratios) of cell-type specificity of genes. Either the object itself or a pathway to an .RData file containing an object named "wilcoxon_rank_mat_or". We strongly recommend inputting the signature matrix directly.
DEG_list	An object with the first column as gene symbols within the bulk dataset (doesn't have to be in signature matrix), second column is the adjusted P-value, and the third the log2FC. Path to a tsv file containing this info is also acceptable.
case_grep	Tag in the column name for cases (i.e. samples representing upregulated) OR an index of cases.
control_grep	Tag in the column name for control (i.e. samples representing downregulated) OR an index of cases.
<pre>max_proportion_</pre>	
	Maximum cell-type proportion change. May be useful if a cell-type does not exist in one condition, thus preventing infinite values.
print_plots	Whether boxplots of the estimated CT proportion for the leave-one-out method of CT deconvolution should be printed (T/F).
plot_names	If plots are being printed, the pre-fix of their .pdf files.
theSpecies	internal species designation to be passed from 'scMappR_and_pathway_analysis'. It only impacts this function if data are taken directly from the PanglaoDB database (i.e. not reprocessed by scMappR or the user).
FC_coef	Making cwFold-changes based on fold-change (TRUE) or rank := (-log10(Pval)) (FALSE) rank. After testing, we strongly recommend to keep true (T/F).
sig_matrix_size	e
	Number of genes in signature matrix for cell-type deconvolution.
drop_unknown_ce	
	Whether or not to remove "unknown" cell-types from the signature matrix (T/F).
toSave	Allow scMappR to write files in the current directory (T/F).
path	If toSave == TRUE, path to the directory where files will be saved.
deconMethod	Which RNA-seq deconvolution method to use to estimate cell-type proporitons. Options are "WGCNA", "DCQ", or "DeconRNAseq"
rareCT_filter	option to keep cell-types rarer than 0.1 percent of the population (T/F). Setting to FALSE may lead to false-positives.

Details

This function completes the pre-processing, normalization, and scaling steps in the scMappR algorithm before calculating cwFold-changes. cwFold-changes scales bulk fold-changes by the cell-type specificity of the gene, cell-type gene-normalized cell-type proportions, and the reciprocal ratio of cell-type proportions between the two conditions. cwFold-changes are generated for genes that are in both the count matrix and in the list of DEGs. It does not have to also be in the signature matrix. First, this function will estimate cell-type proportions with all genes included before estimating changes in cell-type proportion between case/control using a t-test. Then, it takes a leave-one-out approach to cell-type deconvolution such that estimated cell-type proportions are computed for every inputted DEG. Optionally, the differences between cell-type proportions before and after a gene is removed is plotted in boxplots. Then, for every gene, cwFold-changes are computed with the following formula (the example for upreguated genes) val <- cell-preferences * cell-type_proportion * cell-type_proportion_fold-change * sign*2^abs(gene_DE\$log2fc). A matrix of cwFold-changes for all DEGs are returned.

Value

List with the following elements:

cellWeighted_Foldchange

data frame of cellweightedFold changes for each gene.

cellType_Proportions

data frame of cell-type proportions from DeconRNA-seq.

leave_one_out_proportions

data frame of average cell-type proportions for case and control when gene is removed.

processed_signature_matrix

signature matrix used in final analysis.

Examples

12

Description

Extracting cell-type markers from a signature matrix.

Usage

```
extract_genes_cell(
  geneHeat,
  cellTypes = "ALL",
  val = 1,
  isMax = FALSE,
  isPvalue = FALSE
)
```

Arguments

geneHeat	The heatmap of ranks from your scRNA-seq dataset with your genes subsetted.
cellTypes	The cell-types that you're interested in extracting. They need to be colnames (not case sensitive).
val	How associated a gene is with a particular cell type to include in your list - default is slightly associated.
isMax	If you are taking the single best CT marker (T/F) – TRUE not recommended.
isPvalue	If the signature matrix is raw p-value (T/F) – TRUE not recommended.

Details

This function takes a signature matrix and extracts cell-type markers above a p-value or fold-change threshold.

Value

extract_genes_cell A vector of genes above the threshold for each sample.

Examples

```
data(POA_example)
Signature <- POA_example$POA_Rank_signature
RowName <- get_gene_symbol(Signature)
rownames(Signature) <-RowName$rowname
# extract genes with a -log10(Padj > 1)
Signat <- extract_genes_cell(Signature)</pre>
```

generes_to_heatmap Generate signature matrix

Description

Convert a list of cell-type markers from FindMarkers in Seurat to a signature matrix defined by odds ratio and rank.

Usage

```
generes_to_heatmap(
  generes = generes,
  species = "human",
  naming_preference = -9,
  rda_path = "",
  make_names = TRUE,
  internal = FALSE
)
```

Arguments

generes A list of cell-type markers with fold-changes and p-values (FindMarkers out in Seurat).	put	
species The species of gene symbols, if not internal, "human" or "mouse".		
naming_preference		
Likely cell-types given tissues (to be passed into human_mouse_ct_marker_e	nrich).	
rda_path Path to output direcotry, if toSave is true.		
make_names Identify names of cell-type markers using the Fisher's exact test method (T/	F).	
internal If this function is pre-processing from Panglao (T/F).		

Details

Take a list of compiled differentially expressed genes from different cell-types, identify what the cell-types are using the Fisher's exact test, and then convert into a signature matrix for both the adjusted p-value and odds ratio.

Value

List with the following elements:

pVal	A dataframe containing the signature matrix of ranks (-log10(Padj) * sign(fold-change)).
OR	A dataframe containing the signature matrix of odds ratios.
cellname	A vector of the cell-labels returned from the GSVA method.
topGenes	the top 30 mos expressed genes in each cell-type.

get_gene_symbol

Examples

```
data(POA_example)
  POA_generes <- POA_example$POA_generes
  signature <- generes_to_heatmap(POA_generes, species = -9, make_names = FALSE)</pre>
```

get_gene_symbol

Internal – get gene symbol from Panglao.db assigned gene-names (symbol-ensembl).

Description

Internal – removes Ensembl signature appended to signature matrix from Panglao and figure out species by pre-fix Ensembl of the Ensembl ID that is appended to gene names.

Usage

```
get_gene_symbol(wilcoxon_rank_mat_t)
```

Arguments

```
wilcoxon_rank_mat_t
```

Matrix where row names are "GeneSymbol-Ensembl" (human or mouse).

Details

Internal: This function removes the ENGMUS/ENGS tag from Panglao created gene names (symbol-ENGS). From the ENSG/ENSMUS, this function determines if the species is mouse/human and returns the gene symbols.

Value

List with the following elements:

rowname	Genes in the signature matrix excluding the ensemble name.
species	"mouse" or "human" depending on appended ensembl symbols.

Examples

```
# load signature
data(POA_example)
POA_OR_signature <- POA_example$POA_OR_signature
symbols <- get_gene_symbol(POA_OR_signature)</pre>
```

```
get_signature_matrices
```

Get signature matrices.

Description

This function downloads and returns signature matrices and associated cell-type labels from the scMappR_data repo.

Usage

```
get_signature_matrices(type = "all")
```

Arguments

type a character vector that can be 'all', 'pVal', or 'OR'

Value

get_signature_matrices Returns the signature matrices currently stored in scMappR_Data. Associated cell-type labels from different methods for each signature matrix is also provided.

Examples

signatures <- get_signature_matrices(type = "all")</pre>

gmt

gmt_example

Description

Markers of 5 glial cell-types

Usage

data(gmt)

Format

A list with 5 character vectors, each containing genes.

Astrocytes_panglao astrocyte markers identified by panglao Schwann_panglao Schwann markers identified by panglao Bergmann glia_panglao Bergmann glia markers identified by panglao Kupffer_panglao Kupffer markers identified by panglao Oligodendrocyte progenitor_panglao Oligodendrocyte progenitor markers identified by panglao

Details

A named list containing the cell-type markers of 5 glial cell types. Used for testing cell-type naming functions.

Examples

data(gmt)

gProfiler_cellWeighted_Foldchange Pathway enrichment for cwFold-changes

Description

This function runs through each list of cell weighted Fold changes (cwFold-changes) and completes both pathway and transcription factor (TF) enrichment.

Usage

```
gProfiler_cellWeighted_Foldchange(
    cellWeighted_Foldchange_matrix,
    species,
    background,
    gene_cut,
    newGprofiler
)
```

Arguments

cellWeighted_Foldchange_matrix

	Matrix of cell weighted Fold changes from the deconvolute_and_contextualize functions.
species	Human, mouse, or a name that is compatible with gProfileR (e.g. "mmusculus").
background	A list of background genes to test against.
gene_cut	The top number of genes in pathway analysis.
newGprofiler	Using gProfileR or gprofiler2, (T/F).

Details

This function takes a matrix of cellWeighted_Foldchange and a species (human, mouse, or a character directly compatible with g:ProfileR). Before completing pathway analysis with g:ProfileR. Enriched pathways are stored in a list and returned.

Value

List with the following elements:

BP	gprofiler enrichment of biological pathways for each cell-type
TF	gprofiler enrichment of transcription factors for eachc cell-type.

Examples

data(PBMC_example)

```
bulk_DE_cors <- PBMC_example$bulk_DE_cors</pre>
bulk_normalized <- PBMC_example$bulk_normalized</pre>
odds_ratio_in <- PBMC_example$odds_ratio_in</pre>
case_grep <- "_female"</pre>
control_grep <- "_male"</pre>
max_proportion_change <- 10</pre>
print_plots <- FALSE</pre>
theSpecies <- "human"
norm <- deconvolute_and_contextualize(count_file = bulk_normalized,</pre>
                                        signature_matrix = odds_ratio_in,
                                         DEG_list = bulk_DE_cors, case_grep = case_grep,
                                         control_grep = control_grep,
                                          max_proportion_change = max_proportion_change,
                                          print_plots = print_plots,
                                          theSpecies = theSpecies)
background = rownames(bulk_normalized)
STVs <- gProfiler_cellWeighted_Foldchange(</pre>
cellWeighted_Foldchange_matrix = norm$cellWeighted_Foldchange,
 species = theSpecies, background = background, gene_cut = -9,
 newGprofiler = TRUE)
```

gsva_cellIdentify Cell-type naming with GSVA

Description

This function computes the mean expression of every cell-type before predicting the most likely cell-type using the GSVA method.

gsva_cellIdentify

Usage

```
gsva_cellIdentify(
  pbmc,
  theSpecies,
  naming_preference = -9,
  rda_path = "",
  toSave = FALSE
)
```

Arguments

Processed Seurat object without named cells.		
"human" or "mouse" – it will determine which species cell-type markers will originate from.		
naming_preference		
Once top cell-type markers are identified, naming_preferences will then extract CT markers within a more appropriate tissue type.		
Path to pre-computed cell-type .gmt files (rda objects).		
If scMappR is allowed to write files and directories.		

Details

This function inputs a Seurat object and uses the average normalized expression of each gene in each cluster to identify cell-types using the GSVA method.

Value

List with the following elements:

cellMarker	Most likely cell-types predicted from CellMarker database.
panglao	Most likely cell-types predicted from Panglao database.
avg_expression	Average expression of each gene in each cell-type.

Examples

heatmap_generation Generate Heatmap

Description

This function takes an inputted signature matrix as well as a list of genes and overlaps them. Then, if there is overlap, it prints a heatmap or barplot (depending on the number of overlapping genes). Then, for every cell-type, genes considered over-represented are saved in a list.

Usage

```
heatmap_generation(
  genesIn,
  comp,
  reference,
  cex = 0.8,
  rd_path = "",
  cellTypes = "ALL",
  pVal = 0.01,
  isPval = TRUE,
  isMax = FALSE,
  isBackground = FALSE,
  which_species = "human",
  toSave = FALSE,
  path = NULL
)
```

Arguments

genesIn	A list of gene symbols (all caps) to have their cell type enrichment.	
comp	The name of the comparison.	
reference	Path to signature matrix or the signature matrix itself.	
cex	The size of the genes in the column label for the heatmap.	
rd_path	The directory to RData files – if they are not in this directory, then the files will be downloaded.	
cellTypes	Colnames of the cell-types you will extract (passed to extract_genes_cell).	
pVal	The level of association a gene has within a cell type (passed to extract_genes_cell)	
isPval	If the signature matrix is raw p-value (T/F) – TRUE not recommended	
isMax	If you are taking the single best CT marker (T/F) – TRUE not recommended	
isBackground	If the heatmap is from the entire signature matrix or just the inputted gene list (T/F). isBackground == TRUE is used for internal.	
which_species	Species of gene symbols – "human" or "mouse".	
toSave	Allow scMappR to write files in the path directory (T/F).	
path	If toSave == TRUE, path to the directory where files will be saved.	

Value

List with the following elements:

genesIn	Vector of genes intersecting gene list and signature matrix.
genesNoIn	Vector of inputted genes not in signature matrix.
geneHeat	Signature matrix subsetted by inputted gene list
preferences	Cell-markers mapping to cell-types.

Examples

Description

This function completes the Fisher's exact test cell-type naming for all cell-types.

Usage

```
human_mouse_ct_marker_enrich(
  gene_lists,
  theSpecies = "human",
  cell_marker_path = "",
  naming_preference = -9
)
```

Arguments

gene_lists	A named list of vectors containing cell-type markers (mouse or human gene- symbols) which will be named as a cell-type via the Fisher's exact test method.	
theSpecies	The species of the gene symbols: "human" or "mouse".	
cell_marker_path		
	If local, path to cell-type marker rda files, otherwise, we will try to download	
	data files.	
naming_preference		
	Either -9 if there is no expected cell-type or one of the categories from get_naming_preference_options().	
	This is useful if you previously have an idea of which cell-type you were going to enrich.	

Details

Fisher's exact test method of cell-type identification using the Panglao and CellMarker databases. It extracts significant pathways (pFDR < 0.05). Then, if naming_preference != -9, it will extract the enriched cell-types within the cell-types identified with the naming preferences option. Generally, this method seems to be biased to cell-types with a greater number of markers.

Value

List with the following elements:

cellTypes	most likely marker for each cell-type from each database.
marker_sets	all enriched cell-types for each cluster from each dataset.

Examples

make_TF_barplot Plot g:profileR Barplot (TF)

Description

Make a barplot of the top transcription factors enriched by gprofileR.

make_TF_barplot

Usage

make_TF_barplot(ordered_back_all_tf, top_tf = 5)

Arguments

ordered_back_all_tf		
	Output of the g:profileR function.	
top_tf	The number of transcription factors to be plotted.	

Details

This function takes a gprofileR output and prints the top "top_tfs" most significantly enriched fdr adjusted p-values before plotting the rank of their p-values.

Value

make_TF_barplot A barplot of the number of "top_tf" tf names (not motifs), ranked by -log10(Pfdr).

Examples

```
data(POA_example)
 POA_generes <- POA_example$POA_generes</pre>
 POA_OR_signature <- POA_example$POA_OR_signature</pre>
 POA_Rank_signature <- POA_example$POA_Rank_signature</pre>
Signature <- as.data.frame(POA_Rank_signature)</pre>
rowname <- get_gene_symbol(Signature)</pre>
rownames(Signature) <- rowname$rowname</pre>
ordered_back_all <- gprofiler2::gost(query = rowname$rowname[1:100], organism = "mmusculus",
ordered_query = TRUE, significant = TRUE, exclude_iea = FALSE, multi_query = FALSE,
measure_underrepresentation = FALSE, evcodes = FALSE, user_threshold = 0.05,
correction_method = "fdr", numeric_ns = "", sources = c("GO:BP", "KEGG", "REAC"))
ordered_back_all <- ordered_back_all$result</pre>
ordered_back_all <- ordered_back_all[ordered_back_all$term_size > 15 &
 ordered_back_all$term_size < 2000 & ordered_back_all$intersection_size > 2,]
ordered_back_all_tf <- gprofiler2::gost(query = rowname$rowname[1:150], organism = "mmusculus",
 ordered_query = TRUE, significant = TRUE, exclude_iea = FALSE, multi_query = FALSE,
 measure_underrepresentation = FALSE, evcodes = FALSE, user_threshold = 0.05,
  correction_method = "fdr", numeric_ns = "", sources = c("TF"))
ordered_back_all_tf <- ordered_back_all_tf$result</pre>
ordered_back_all_tf <- ordered_back_all_tf[ordered_back_all_tf$term_size > 15
& ordered_back_all_tf$term_size < 5000 & ordered_back_all_tf$intersection_size > 2,]
TF = ordered_back_all_tf
BP <- ordered_back_all</pre>
bp <- plotBP(BP)</pre>
tf <- make_TF_barplot(TF)</pre>
```

```
pathway_enrich_internal
```

Internal - Pathway enrichment for cellWeighted_Foldchanges and bulk gene list

Description

This function completes pathway enrichment of cellWeighted_Foldchanges and bulk gene list.

Usage

```
pathway_enrich_internal(
   DEGs,
   theSpecies,
   scMappR_vals,
   background_genes,
   output_directory,
   plot_names,
   number_genes = -9,
   newGprofiler = FALSE,
   toSave = FALSE,
   path = NULL
)
```

Arguments

DEGs	Differentially expressed genes (gene_name, padj, log2fc).	
theSpecies	Human, mouse, or a character that is compatible with g:ProfileR.	
scMappR_vals	cell weighted Fold-changes of differentially expressed genes.	
background_gene	es	
	A list of background genes to test against.	
output_directory		
	Path to the directory where files will be saved.	
plot_names	Names of output.	
number_genes	Number of genes to if there are many, many DEGs.	
newGprofiler	Whether to use g:ProfileR or gprofiler2 (T/F).	
toSave	Allow scMappR to write files in the current directory (T/F).	
path	If toSave == TRUE, path to the directory where files will be saved.	

Details

Internal: Pathway analysis of differentially expressed genes (DEGs) and cell weighted Fold-changes (cellWeighted_Foldchanges) for each cell-type. Returns .RData objects of differential analysis as well as plots of the top bulk pathways. It is a wrapper for making barplots, bulk pathway analysis, and gProfiler_cellWeighted_Foldchange.

Value

List with the following elements:

BPs	Enriched biological pathways for each cell-type.
TFs	Enriched transcription factors for each cell-type.

Examples

```
data(PBMC_example)
bulk_DE_cors <- PBMC_example$bulk_DE_cors</pre>
bulk_normalized <- PBMC_example$bulk_normalized</pre>
odds_ratio_in <- PBMC_example$odds_ratio_in</pre>
case_grep <- "_female"</pre>
control_grep <- "_male"</pre>
max_proportion_change <- 10</pre>
print_plots <- FALSE</pre>
theSpecies <- "human"
toOut <- scMappR_and_pathway_analysis(bulk_normalized, odds_ratio_in,</pre>
                                         bulk_DE_cors, case_grep = case_grep,
                                         control_grep = control_grep, rda_path = "",
                                         max_proportion_change = 10, print_plots = TRUE,
                                          plot_names = "tst1", theSpecies = "human",
                                          output_directory = "tester",
                                      sig_matrix_size = 3000, up_and_downregulated = FALSE,
                                          internet = FALSE)
```

PBMC_example PBMC_scMappR

Description

Toy example of data where cell-weighted fold-changes and related downsteam analyses can be completed.

Usage

data(PBMC_example)

Format

A list containing three data frames, normalized count data, a signature matrix, and a list of differentially expressed genes.

bulk_normalized A 3231 x 9 matrix where rows are genes, columns are samples, and the matrix is filled with CPM normalized counts.

- **odds_ratio_in** A 2336 x 7 matrix where rows are genes, columns are cell-types and matrix is filled with the odds-ratio that a gene is in each cell-type.
- **bulk_DE_cors** A 59 x 3 matrix of sex-specific genes found between male and female PBMC samples (female biased = upregulated). row and rownames are genes, columns are gene name, FDR adjusted p-value, and log2 fold-change. DEGs were computed with DESeq2 and genes with a log2FC > 1 were kept.

Details

A named list called "PBMC_example" containing the count data, signature matrix, and DEGs. The count data and signature matrix are shortened to fit the size of the package and do not reflect biologically relevant data.

Examples

data(PBMC_example)

plotBP

Plot gProfileR Barplot

Description

Make a barplot of the top biological factors enriched by g:ProfileR.

Usage

```
plotBP(ordered_back_all, top_bp = 10)
```

Arguments

ordered_back_all Output of the g:ProfileR function. top_bp The number of pathways you want to plot.

Details

This function takes a gProfileR output and prints the top "top_bp" most significantly enriched FDR adjusted p-values before plotting the rank of their p-values.

Value

plotBP A barplot of the number of "top_bp" pathways, ranked by -log10(Pfdr).

POA_example

Examples

```
data(POA_example)
 POA_generes <- POA_example$POA_generes</pre>
 POA_OR_signature <- POA_example$POA_OR_signature</pre>
 POA_Rank_signature <- POA_example$POA_Rank_signature</pre>
Signature <- as.data.frame(POA_Rank_signature)</pre>
rowname <- get_gene_symbol(Signature)</pre>
rownames(Signature) <- rowname$rowname</pre>
ordered_back_all <- gprofiler2::gost(query = rowname$rowname[1:100], organism = "mmusculus",
 ordered_query = TRUE, significant = TRUE, exclude_iea = FALSE, multi_query = FALSE,
  measure_underrepresentation = FALSE, evcodes = FALSE, user_threshold = 0.05,
   correction_method = "fdr", numeric_ns = "", sources = c("GO:BP", "KEGG", "REAC"))
ordered_back_all <- ordered_back_all$result</pre>
ordered_back_all <- ordered_back_all[ordered_back_all$term_size > 15
 & ordered_back_all$term_size < 2000 & ordered_back_all$intersection_size > 2,]
ordered_back_all_tf <- gprofiler2::gost(query = rowname$rowname[1:150], organism = "mmusculus",
 ordered_query = TRUE, significant = TRUE, exclude_iea = FALSE, multi_query = FALSE,
  measure_underrepresentation = FALSE, evcodes = FALSE, user_threshold = 0.05,
   correction_method = "fdr", numeric_ns = "", sources = c("TF"))
ordered_back_all_tf <- ordered_back_all_tf$result</pre>
ordered_back_all_tf <- ordered_back_all_tf[ordered_back_all_tf$term_size > 15
& ordered_back_all_tf$term_size < 5000 & ordered_back_all_tf$intersection_size > 2,]
TF = ordered_back_all_tf
BP <- ordered_back_all</pre>
bp <- plotBP(ordered_back_all = BP)</pre>
tf <- make_TF_barplot(ordered_back_all_tf = TF)</pre>
```

POA_example Preoptic_Area

Description

Toy data for tissue_scMappR_custom, tissue_scMappR_internal, generes_to_heatmap.

Usage

data(POA_example)

Format

A list containing three objects: summary statistics of cell-type markers, a signature matrix of odds ratios, and a signature matrix of ranks.

POA_generes A list of 27 data frames containing (up to 30) cell-type markers. Each element of the list is a dataframe where rows are genes, and columns are p-value, log2FC, percentage of cells expressing gene in cell-type, percentage of cells expressing gene in other cell-types, and FDR adjusted p-value.

- **POA_OR_signature** A 266 x 27 matrix where rows are genes, columns are cell-types and matrix is filled with the odds-ratio that a gene is in each cell-type.
- **POA_Rank_signature** A 266 x 27 matrix of matrix where rows are genes, columns are cell-types and matrix is filled with the rank := $-\log 10(P_fdr)$ that a gene is in each cell-type.

Details

A named list called POA_example (pre-optic area example) containing three objects, POA_generes: a list of truncated dataframes containing summary statistics for each cell-type marker, POA_OR_signature a truncated signature matrix of odds ratio's for cell-types in the POA, and POA_Rank_signature a truncated signature matrix of -log10(Padj) for cell-type markers in the POA.

Examples

data(POA_example)

process_dgTMatrix_lists

Count Matrix To Signature Matrix

Description

This function takes a list of count matrices, processes them, calls cell-types, and generates signature matrices.

Usage

```
process_dgTMatrix_lists(
  dgTMatrix_list,
  name,
  species_name,
  naming_preference = -9,
  rda_path = "",
  panglao_set = FALSE,
  haveUMAP = FALSE,
  saveSCObject = FALSE,
  internal = FALSE,
  toSave = FALSE,
  path = NULL,
  use_sctransform = FALSE,
  test_ctname = "wilcox",
 genes_integrate = 2000,
  genes_include = FALSE
)
```

Arguments

dgTMatrix_list	A list of matrices in the class of dgTMatrix object – sparce object – compatible with Seurat rownames should be of the same species for each.	
name	The name of the outputted signature matrices, cell-type preferences, and Seurat objects if you choose to save them.	
species_name	Mouse or human symbols, -9 if internal as Panglao objects have gene symbol and ensembl combined.	
naming_preferen	nce	
	For cell-type naming, see if cell-types given the inputted tissues are more likely to be named within one of the categories. These categories are: "brain", "ep- ithelial", "endothelial", "blood", "connective", "eye", "epidermis", "Digestive", "Immune", "pancreas", "liver", "reproductive", "kidney", "respiratory".	
rda_path	If saved, directory to where data from scMappR_data is downloaded.	
panglao_set	If the inputted matrices are from Panglao (i.e. if they're internal).	
haveUMAP	Save the UMAPs - requires additional packages (see Seurat for details).	
saveSCObject	Save the Seurat object as an RData object (T/F).	
internal	Was this used as part of the internal processing of Panglao datasets (T/F).	
toSave	Allow scMappR to write files in the current directory (T/F)	
path	If toSave == TRUE, path to the directory where files will be saved.	
use_sctransform		
	If you should use sctransform or the Normalize/VariableFeatures/ScaleData pipeline (T/F).	
test_ctname	statistical test for calling CT markers – must be in Seurat	
genes_integrate		
	The number of genes to include in the integration anchors feature when combin- ing datasets.	
genes_include	TRUE or FALSE – include 2000 genes in signature matrix or all matrix.	

Details

This function is a one line wrapper to process count matrices into a signature matrix. It combines process_from_count, two methods of identifying cell-type identities (GSVA and Fisher's test). Then, it takes the output of cell-type markers and converts it into a signature matrix of p-value ranks and odds ratios. It saves the Seurat object (if chosen with saveSCObject), cell-type identities from GSVA (its own object), and the signature matrices. Cell-type marker outputs are also saved in the generes .RData list. This is a list of cell-types containing all of the cell-type markers found with the FindMarkers function. Names of the generes lists and the signature matrices are kept.

Value

List with the following elements:

wilcoxon_rank_mat_t

A dataframe containing the signature matrix of ranks (-log10(Padj) * sign(fold-change)).

wilcoxon_rank_	mat_or
	A dataframe containing the signature matrix of odds-ratios.
generes	All cell-type markers for each cell-type with p-value and fold changes.
cellLabel	matrix where each row is a cluster and each column provides information on the cell-type. Columns provide info on the cluster from seurat, the cell-type label from CellMarker and Panglao using the fisher's exact test and GSVA, and the top 30 markers per cluser.

Examples

process_from_count Count Matrix To Seurat Object

Description

This function processes a list of count matrices (same species/gene symbols in each list) and converts them to a Seurat object.

Usage

```
process_from_count(
   countmat_list,
   name,
   theSpecies = -9,
   haveUmap = FALSE,
   saveALL = FALSE,
   panglao_set = FALSE,
   toSave = FALSE,
   path = NULL,
   use_sctransform = FALSE,
   genes_integrate = 2000,
   genes_include = FALSE
)
```

Arguments

countmat_list	A list of count matrices that will be integrated using the IntegrationAnchors
	features they should have the same rownames. A dgCMatrix or matrix object is
	also acceptable, and no samples will be integrated.
name	The output of the normalized and fused Seurat object if you choose to keep it.

theSpecies	Gene symbols for human, mouse, or -9 if internal. If your species is not human or mouse gene symbols, make sure that you have "MT-" before your mitochondrial gene names then pick "human".
haveUmap	Write a UMAP (T/F).
saveALL	Save the Seurat object generated (T/F).
panglao_set	If the function is being used from internal (T/F).
toSave	Allows scMappR to print files and make directories locally (T/F).
path	If toSave == TRUE, path to the directory where files will be saved.
use_sctransform	
	If you should use sctransform or the Normalize/VariableFeatures/ScaleData pipeline (T/F).
genes_integrate	
	The number of genes to include in the integration anchors feature when combin- ing datasets
genes_include	TRUE or FALSE – include 2000 genes in signature matrix or all matrix.

Details

This function takes a list of count matrices and returns a Seurat object of the count matrices integrated using Seurat v4 (and IntegrationAnchors feature). Different normalization features such as the SCTransform pipeline are also available in this function. Different options are used when the function is being ran internally (i.e. reprocessing count matrices from PanglaoDB) or if it is running from custom scRNA-seq data. Larger scRNA-seq datasets can take considerable amounts of memory and run-time. See Seurat for details.

Value

process_from_count A processed and integrated Seurat object that has been scaled and clustered. It can be returned as an internal object or also stored as an RData object if necessary.

Examples

scMappR_and_pathway_analysis

Generate cellWeighted_Foldchanges, visualize, and enrich.

Description

This function generates cell weighted Fold-changes (cellWeighted_Foldchange), visualizes them in a heatmap, and completes pathway enrichment of cellWeighted_Foldchanges and the bulk gene list using g:ProfileR.

Usage

```
scMappR_and_pathway_analysis(
  count_file,
  signature_matrix,
 DEG_list,
  case_grep,
  control_grep,
  rda_path = "",
 max_proportion_change = -9,
  print_plots = T,
  plot_names = "scMappR",
  theSpecies = "human",
  output_directory = "scMappR_analysis",
  sig_matrix_size = 3000,
  drop_unknown_celltype = TRUE,
  internet = TRUE,
  up_and_downregulated = FALSE,
  gene_label_size = 0.4,
  number_genes = -9,
  toSave = FALSE,
  newGprofiler = TRUE,
  path = NULL,
  deconMethod = "DeconRNASeq",
  rareCT_filter = TRUE
)
```

Arguments

count_file Normalized (i.e. TPM, RPKM, CPM) RNA-seq count matrix where rows are gene symbols and columns are individuals. Inputted data should be a data.frame or matrix. A character vector to a tsv file where this data can be loaded is also acceptable. Gene symbols from the count file, signature matrix, and DEG list should all match (case sensitive, gene symbol or ensembl, etc.)

signature_matrix

Signature matrix: a gene by cell-type matrix populated with the fold-change of gene expression in cell-type marker "i" vs all other cell-types. Object should be

a data.frame or matrix.

DEG_list	An object with the first column as gene symbols within the bulk dataset (doesn't have to be in signature matrix), second column is the adjusted p-value, and the third the log2FC path to a .tsv file containing this info is also acceptable.
case_grep	A character representing what designates the "cases" (i.e. upregulated is 'case' biased) in the columns of the count file. A numeric vector of the index of "cases" is also acceptable. Tag in the column name for cases (i.e. samples representing upregulated) OR an index of cases.
control_grep	A character representing what designates the "control" (i.e. downregulated is 'control biased) in the columns of the count file. A numeric vector of the index of "control" is also acceptable. Tag in the column name for cases (i.e. samples representing upregulated) OR an index of cases.
rda_path	If downloaded, path to where data from scMappR_data is stored.
max_proportion	_change
	Maximum cell-type proportion change – may be useful if there are many rare cell-type. Alternatively, if a cell-type is only present in one condition but not the other, it will prevent possible infinite or 0 cwFold-changes.
print_plots	Whether boxplots of the estimated CT proportion for the leave-one-out method of CT deconvolution should be printed. The same name of the plots will be completed for top pathways.
plot_names	The prefix of plot pdf files.
theSpecies	human, mouse, or a species directly compatible with gProfileR (i.e. g:ProfileR).
output_directo	
	The name of the directory that will contain output of the analysis.
sig_matrix_siz	e Maximum number of genes in signature matrix for cell-type deconvolution.
drop_unknown_c	
	Whether or not to remove "unknown" cell-types from the signature matrix.
internet	Whether you have stable Wifi (T/F).
up_and_downreg	ulated
	Whether you are additionally splitting up/downregulated genes (T/F).
gene_label_siz	e The size of the gene label on the plot.
number conce	The number of genes to cut-off for pathway analysis (good with many DEGs).
number_genes	
toSave	Allow scMappR to write files in the current directory (T/F). Whether to use $aBrefileB$ or $arrefile2$ (T/F)
newGprofiler	Whether to use gProfileR or gprofiler2 (T/F).
path	If toSave == TRUE, path to the directory where files will be saved.
deconMethod	Which RNA-seq deconvolution method to use to estimate cell-type proporitons. Options are "WGCNA", "DCQ", or "DeconRNAseq"
rareCT_filter	option to keep cell-types rarer than 0.1 percent of the population (T/F). Setting to FALSE may lead to false-positives.

Details

This function generates cellWeighted_Foldchanges for every cell-type (see deconvolute_and_contextualize), as well as accompanying data such as cell-type proportions with the DeconRNA-seq, WGCNA, or DCQ methods. Then, it generates heatmaps of all cellWeighted_Foldchanges, cellWeighted_Foldchanges overlapping with the signature matrix, the entire signature matrix, the cell-type preference values from the signature matrix that overlap with inputted differentially expressed genes. Then, assuming there is available internet, it will complete gProfileR of the reordered cellWeighted_Foldchanges as well as a the ordered list of genes. This function is a wrapper for deconvolute_and_contextualize and pathway_enrich_internal and the primary function within the package.

Value

List with the following elements:

cellWeighted_Foldchanges	
	Cellweighted Fold-changes for all differentially expressed genes.
paths	Enriched biological pathways for each cell-type.
TFs	Enriched TFs for each cell-type.

Examples

```
data(PBMC_example)
bulk_DE_cors <- PBMC_example$bulk_DE_cors</pre>
bulk_normalized <- PBMC_example$bulk_normalized</pre>
odds_ratio_in <- PBMC_example$odds_ratio_in</pre>
case_grep <- "_female"</pre>
control_grep <- "_male"</pre>
max_proportion_change <- 10</pre>
print_plots <- FALSE</pre>
theSpecies <- "human"
toOut <- scMappR_and_pathway_analysis(count_file = bulk_normalized,
                                         signature_matrix = odds_ratio_in,
                                         DEG_list = bulk_DE_cors, case_grep = case_grep,
                                         control_grep = control_grep, rda_path = "",
                                         max_proportion_change = 10, print_plots = TRUE,
                                         plot_names = "tst1", theSpecies = "human",
                                         output_directory = "tester",
                                         sig_matrix_size = 3000.
                                         up_and_downregulated = FALSE,
                                         internet = FALSE)
```

scMappR_tissues

34

seurat_to_generes

Description

Tissues available in scMappR.

Usage

```
data(scMappR_tissues)
```

Format

A vector of tissue names available for tissue_scMappR_internal or to download and use in scMappR_and_pathway_analysis. **scMappR_tissues** A list of 174 tissue names from PanglaoDB.

Details

A vector of tissues available in scMappR.

Examples

data(scMappR_tissues)

seurat_to_generes *Identify all cell-type markers*

Description

Takes processed Seurat matrix and identifies cell-type markers with FindMarkers in Seurat.

Usage

```
seurat_to_generes(pbmc, test = "wilcox")
```

Arguments

pbmc	Processed Seurat object.
test	statistical test for calling CT markers – must be in Seurat.

Details

Internal: This function runs the FindMarkers function from Seurat in a loop, will use the Seurat v2 or Seurat v3 object after identifying which Seurat object is inputted. It then takes the output of the FindMarkers and puts it in a list, returning it.

Value

seurat_to_generes A list of genes where their over-representation in the i'th cell-type is computed. Each element contains the gene name, adjusted p-value, and the log2Fold-Change of each gene being present in that cell-type.

Examples

single_gene_preferences

Single cell-type gene preferences

Description

Measure enrichment of individual cell-types in a signature matrix.

Internal function as part of tissue_scMappR_internal(). This function takes genes preferentially expressed within a gene list, each cell-type and the background (i.e. all genes within the signature matrix) before completing the cell-type specific enrichment of the inputted gene list on each cell type. This function then returns a table describing the cell-type enrichments (p-value and odds ratio) of each cell-type.

Usage

```
single_gene_preferences(
    hg_short,
    hg_full,
    study_name,
    outDir,
    toSave = FALSE,
    path = NULL
)
```

Arguments

hg_short	A list with two objects: a "preferences" and a "genesIn". Preferences is a list of gene symbols over-represented in each cell-type and genesIn were all the inputted genes.
hg_full	The same as hg_short but for every gene in the signature matrix.
study_name	Name of output table.
outDir	Directory where table is outputted.
toSave	Allow scMappR to write files in the current directory (T/F).
path	If toSave == TRUE, path to the directory where files will be saved.

36

sm

Value

single_gene_preferences A gene-set enrichment table of individual cell-type enrichment.

Examples

sm

single_cell_process

Description

Example data for processing scRNA-seq count data with Seurat.

Usage

data(sm)

Format

A 752 x 236 matrix of class dgCMatrix where rows are genes and columns are cells. Data matrix is filled with counts detected from scRNAseq.

TCTCTAACACAGGCCT Barcode of one of the sequenced cells present. Each column is the count from a scRNA-seq dataset reprocessed by PanglaoDB.

Details

A dgCMatrix object containing count data for scRNA-seq processing.

Examples

data(sm)

tissue_by_celltype_enrichment

tissue_by_celltype_enrichment

Description

This function uses a Fisher's-exact-test to rank gene-set enrichment.

Usage

```
tissue_by_celltype_enrichment(
  gene_list,
  species,
  name = "CT_Tissue_example",
  p_thresh = 0.05,
  rda_path = "",
  isect_size = 3,
  return_gmt = FALSE
)
```

Arguments

gene_list	A character vector of gene symbols with the same designation (e.g. mouse symbol - mouse, human symbol - human) as the gene set database.
species	Species of cell-type marker to use ('human' or 'mouse').
name	Name of the pdf to be printed.
p_thresh	The Fisher's test cut-off for a cell-marker to be enriched.
rda_path	Path to a .rda file containing an object called "gmt". Either human or mouse cell-type markers split by experiment. If the correct file isn't present they will be downloaded from https://github.com/wilsonlabgroup/scMappR_Data.
<pre>isect_size</pre>	Number of genes in your list and the cell-type.
return_gmt	Return .gmt file – recommended if downloading from online as it may have updated (T/F).

Details

Complete a Fisher's-exact test of an input list of genes against one of the two curated tissue by cell-type marker datasets from scMappR.

Value

List with the following elements:

enriched	Data frame of enriched cell-types from tissues.
gmt	Cell-markers in enriched cell-types from tissues.

tissue_scMappR_custom

Examples

```
data(POA_example)
POA_generes <- POA_example$POA_generes
POA_OR_signature <- POA_example$POA_OR_signature
POA_Rank_signature <- POA_example$POA_Rank_signature
Signature <- POA_Rank_signature
rowname <- get_gene_symbol(Signature)
rownames(Signature) <- rowname$rowname
genes <- rownames(Signature)[1:100]
enriched <- tissue_by_celltype_enrichment(gene_list = genes,
species = "mouse",p_thresh = 0.05, isect_size = 3)</pre>
```

tissue_scMappR_custom Gene List Visualization and Enrichment with Custom Signature Matrix

Description

This function visualizes signature matrix, clusters subsetted genes, completes enrichment of individual cell-types and co-enrichment.

Usage

```
tissue_scMappR_custom(
  gene_list,
  signature_matrix,
  output_directory = "custom_test",
  toSave = FALSE,
  path = NULL,
  gene_cutoff = 1,
  is_pvalue = TRUE
)
```

Arguments

gene_list	A list of gene symbols matching that of the signature_matrix. Any gene symbol is acceptable.
signature_matri	X
	Pre-computed signature matrix with matching gene names.
output_director	у
	Directory made containing output of functions.
toSave	Allow scMappR to write files in the current directory (T/F).
path	If toSave == TRUE, path to the directory where files will be saved.

gene_cutoff	Value cut-off (generally rank := $log10(Padj)$) for a gene to be considered a marker.
is_pvalue	If signature matrix is p-value before rank is applied (not recommended) (T/F).

Details

This function is roughly the same as tissue_scMappR_internal, however now there is a custom signature matrix. It generates a heatmap of the signature matrix and your inputted gene list, as well as single cell-type and co-celltype enrichment.

Value

List with the following elements:

background_heatmap Data frame of the entire gene by cell-type signature matrix inputted. gene_list_heatmap Data frame of inputted signature matrix subsetted by input genes. single_celltype_preferences Data frame of enriched cell-types. group_celtype_preference Data frame of groups of cell-types enriched by the same genes.

Examples

Gene List Visualization and Enrichment (Internal)

Description

This function loops through every signature matrix in a particular tissue and generates heatmaps, cell-type preferences, and co-enrichment.

Usage

```
tissue_scMappR_internal(
  gene_list,
  species,
  output_directory,
  tissue,
  rda_path = "",
  cluster = "Pval",
  genecex = 0.01,
  raw_pval = FALSE,
  path = NULL,
  toSave = FALSE,
  drop_unkown_celltype = FALSE
)
```

Arguments

gene_list	A list of gene symbols, mouse or human.	
species	"mouse", "human" or "-9" if using a precomputed signature matrix.	
output_directory		
	If toSave = TRUE, the name of the output directory that would be built.	
tissue	Name of the tissue in "get_tissues".	
rda_path	Path to the .rda file containing all of the signature matrices.	
cluster	'Pval' or 'OR' depending on if you want to cluster odds ratios or p-values of cell-type preferences.	
genecex	The size of the gene names of the rows in the heatmap.	
raw_pval	If the inputted signature matrix are raw (untransformed) p-values – recommended to generate rank first (T/F).	
path	If toSave == TRUE, path to the directory where files will be saved.	
toSave	Allow scMappR to write files in the current directory (T/F).	
drop_unkown_celltype		
	Whether or not to remove "unknown" cell-types from the signature matrix (T/F).	

Details

This function takes a list of genes and a tissue that is contained in current signature matrices before and generating heatmaps of cell-type preferences. It then completes cell-type enrichment of each individual cell-type, then, if more than two cell-types are significantly enriched, co-enrichment. of those enriched cell-types is then computed.

Value

List with the following elements: background_heatmap Data frame of the entire gene by cell-type signature matrix inputted. gene_list_heatmap Data frame of inputted signature matrix subsetted by input genes. single_celltype_preferences Data frame of enriched cell-types. group_celtype_preference Data frame of groups of cell-types enriched by the same genes.

Examples

tochr

To Character.

Description

This function checks if your vector is not a character and if not, will convert it to a character.

Usage

tochr(x)

Arguments

x A character, factor or numeric vector.

Value

tochr Returns a character vector.

toNum

Examples

```
# vector of factors
fact <- factor(c("a", "b", "c", "d"))
# convert to character
char <- tochr(x = fact)</pre>
```

toNum

To Numeric.

Description

This function checks if your vector is not a character and if it is, then converts it to a numeric.

Usage

toNum(x)

Arguments

x A character, factor, or numeric vector.

Value

toNum Returns a numeric vector.

Examples

```
# vector of factors
fact <- factor(c("1", "2", "3", "4"))
# convert to numeric
num <- toNum(x = fact)</pre>
```

topgenes_extract Extract Top Markers

Description

Internal – Extracts strongest cell-type markers from a Seurat object.

Usage

```
topgenes_extract(generes, padj = 0.05, FC = 1.5, topNum = 30)
```

Arguments

generes	A list of cell-type markers with fold-changes and p-values (FindMarkers output in Seurat).
padj	The p-value (FDR) cutoff.
FC	The fold-change cutoff.
topNum	The number of genes to extract.

Details

Internal, this function runs through a list of outputs from FindMarkers objects in Seurat and will extract genes past a padj and fold-change threshold. Then it extracts the topNum number of genes. if you have not used the FindMarkers function, then a list of summary statistics with fold-change designated by avg_logFC and p-val by p_val_adj.

Value

topgenes_extract Returns a list of character vectors with the top (topNum) of gene markers for each cell-type.

Examples

```
# load generes object
data(POA_example)
topGenes <- topgenes_extract(generes = POA_example$POA_generes)</pre>
```

two_method_pathway_enrichment

```
two_method_pathway_enrichment
```

Description

Pathway analysis of each cell-type based on cell-type specificity and rank improvement by scMappR.

Usage

```
two_method_pathway_enrichment(
    DEG_list,
    theSpecies,
    scMappR_vals,
    background_genes = NULL,
    output_directory = "output",
    plot_names = "reweighted",
    number_genes = -9,
    newGprofiler = TRUE,
    toSave = FALSE,
    path = NULL
)
```

Arguments

DEG_list	Differentially expressed genes (gene_name, padj, log2fc).	
theSpecies	Human, mouse, or a character that is compatible with g:ProfileR.	
scMappR_vals	cell weighted Fold-changes of differentially expressed genes.	
background_genes		
	A list of background genes to test against. NULL assumes all genes in g:profileR gene set databases.	
output_directory		
	Path to the directory where files will be saved.	
plot_names	Names of output.	
number_genes	Number of genes to if there are many, many DEGs.	
newGprofiler	Whether to use g:ProfileR or gprofiler2 (T/F).	
toSave	Allow scMappR to write files in the current directory (T/F).	
path	If toSave == TRUE, path to the directory where files will be saved.	

Details

This function re-ranks cwFoldChanges based on their absolute cell-type specificity scores (percelltype) as well as their rank increase in cell-type specificity before completing an ordered pathway analysis. In the second method, only genes with a rank increase in cell-type specificity were included.

Value

List with the following elements:

rank_increase A list containing the degree of rank change between bulk DE genes and cwFoldchanges. Pathway enrichment and TF enrichment of these reranked genes.

non_rank_increase

list of DFs containing the pathway and TF enrichment of cwFold-changes.

Examples

```
# load data for scMappR
data(PBMC_example)
bulk_DE_cors <- PBMC_example$bulk_DE_cors</pre>
bulk_normalized <- PBMC_example$bulk_normalized</pre>
odds_ratio_in <- PBMC_example$odds_ratio_in</pre>
case_grep <- "_female"</pre>
control_grep <- "_male"</pre>
max_proportion_change <- 10</pre>
print_plots <- FALSE</pre>
theSpecies <- "human"
# calculate cwFold-changes
toOut <- scMappR_and_pathway_analysis(count_file = bulk_normalized,</pre>
                                         signature_matrix = odds_ratio_in,
                                         DEG_list = bulk_DE_cors, case_grep = case_grep,
                                         control_grep = control_grep, rda_path = "",
                                         max_proportion_change = 10, print_plots = TRUE,
                                         plot_names = "tst1", theSpecies = "human",
                                         output_directory = "tester",
                                         sig_matrix_size = 3000,
                                         up_and_downregulated = FALSE,
                                         internet = FALSE)
```

complete pathway enrichment using both methods
twoOutFiles <- two_method_pathway_enrichment(DEG_list = bulk_DE_cors,theSpecies = "human",
scMappR_vals = toOut\$cellWeighted_Foldchange, background_genes = rownames(bulk_normalized),
output_directory = "newfun_test",plot_names = "nonreranked_", toSave = FALSE)</pre>

Index

* datasets gmt, 16 PBMC_example, 25 POA_example, 27 scMappR_tissues, 34 sm, 37 cellmarker_enrich, 3 coEnrich, 4 compare_deconvolution_methods, 6 cwFoldChange_evaluate, 7 DeconRNAseq_CRAN, 9 deconvolute_and_contextualize, 10 extract_genes_cell, 13 generes_to_heatmap, 14 get_gene_symbol, 15 get_signature_matrices, 16 gmt, 16 gProfiler_cellWeighted_Foldchange, 17 gsva_cellIdentify, 18 heatmap_generation, 20 human_mouse_ct_marker_enrich, 21 make_TF_barplot, 22 pathway_enrich_internal, 24 PBMC_example, 25 plotBP, 26 POA_example, 27 process_dgTMatrix_lists, 28 process_from_count, 30 scMappR_and_pathway_analysis, 32 scMappR_tissues, 34

scMappR_tissues, 34
seurat_to_generes, 35
single_gene_preferences, 36
sm, 37

tissue_by_celltype_enrichment, 38
tissue_scMappR_custom, 39
tissue_scMappR_internal, 40
tochr, 42
toNum, 43
topgenes_extract, 44
two_method_pathway_enrichment, 45