Package: scMappR 1.0.11
scMappR: Single Cell Mapper
The single cell mapper (scMappR) R package contains a suite of bioinformatic tools that provide experimentally relevant cell-type specific information to a list of differentially expressed genes (DEG). The function "scMappR_and_pathway_analysis" reranks DEGs to generate cell-type specificity scores called cell-weighted fold-changes. Users input a list of DEGs, normalized counts, and a signature matrix into this function. scMappR then re-weights bulk DEGs by cell-type specific expression from the signature matrix, cell-type proportions from RNA-seq deconvolution and the ratio of cell-type proportions between the two conditions to account for changes in cell-type proportion. With cwFold-changes calculated, scMappR uses two approaches to utilize cwFold-changes to complete cell-type specific pathway analysis. The "process_dgTMatrix_lists" function in the scMappR package contains an automated scRNA-seq processing pipeline where users input scRNA-seq count data, which is made compatible for scMappR and other R packages that analyze scRNA-seq data. We further used this to store hundreds up regularly updating signature matrices. The functions "tissue_by_celltype_enrichment", "tissue_scMappR_internal", and "tissue_scMappR_custom" combine these consistently processed scRNAseq count data with gene-set enrichment tools to allow for cell-type marker enrichment of a generic gene list (e.g. GWAS hits). Reference: Sokolowski,D.J., Faykoo-Martinez,M., Erdman,L., Hou,H., Chan,C., Zhu,H., Holmes,M.M., Goldenberg,A. and Wilson,M.D. (2021) Single-cell mapper (scMappR): using scRNA-seq to infer cell-type specificities of differentially expressed genes. NAR Genomics and Bioinformatics. 3(1). Iqab011. <doi:10.1093/nargab/lqab011>.
Authors:
scMappR_1.0.11.tar.gz
scMappR_1.0.11.zip(r-4.5)scMappR_1.0.11.zip(r-4.4)scMappR_1.0.11.zip(r-4.3)
scMappR_1.0.11.tgz(r-4.4-any)scMappR_1.0.11.tgz(r-4.3-any)
scMappR_1.0.11.tar.gz(r-4.5-noble)scMappR_1.0.11.tar.gz(r-4.4-noble)
scMappR_1.0.11.tgz(r-4.4-emscripten)
scMappR.pdf |scMappR.html✨
scMappR/json (API)
# Install 'scMappR' in R: |
install.packages('scMappR', repos = c('https://dsokolo.r-universe.dev', 'https://cloud.r-project.org')) |
- PBMC_example - PBMC_scMappR
- POA_example - Preoptic_Area
- gmt - Gmt_example
- scMappR_tissues - ScMappR_tissues
- sm - Single_cell_process
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 1 years agofrom:43e80e2977. Checks:OK: 5 WARNING: 1 NOTE: 1. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 01 2024 |
R-4.5-win | OK | Nov 01 2024 |
R-4.5-linux | WARNING | Nov 01 2024 |
R-4.4-win | NOTE | Nov 01 2024 |
R-4.4-mac | OK | Nov 01 2024 |
R-4.3-win | OK | Nov 01 2024 |
R-4.3-mac | OK | Nov 01 2024 |
Exports:cellmarker_enrichcoEnrichcompare_deconvolution_methodscwFoldChange_evaluateDeconRNAseq_CRANdeconvolute_and_contextualizeextract_genes_cellgeneres_to_heatmapget_gene_symbolget_signature_matricesgProfiler_cellWeighted_Foldchangegsva_cellIdentifyheatmap_generationhuman_mouse_ct_marker_enrichmake_TF_barplotpathway_enrich_internalplotBPprocess_dgTMatrix_listsprocess_from_countscMappR_and_pathway_analysisseurat_to_generessingle_gene_preferencestissue_by_celltype_enrichmenttissue_scMappR_customtissue_scMappR_internaltochrtoNumtopgenes_extracttwo_method_pathway_enrichment
Dependencies:abindADAPTSannotateAnnotationDbiaskpassassortheadbase64encbeachmatBHBiobaseBiocFileCacheBiocGenericsBiocParallelBiocSingularBiostringsbitbit64bitopsblobbslibcachemcaToolsclasscliclustercodetoolscolorspaceComICScommonmarkcowplotcpp11crayoncrosstalkcurldata.tableDBIdbplyrDelayedArrayDelayedMatrixStatsdeldirdigestdoParalleldoRNGdotCall64downloaderdplyrdqrnge1071evaluatefansifarverfastDummiesfastmapfilelockfitdistrplusFNNfontawesomeforeachformatRfsfutile.loggerfutile.optionsfuturefuture.applygenericsGenomeInfoDbGenomeInfoDbDataGenomicRangesggplot2ggrepelggridgesglmnetglobalsgluegoftestgplotsgProfileRgprofiler2graphgridExtraGSEABaseGSVAgtablegtoolsHDF5ArrayherehighrhtmltoolshtmlwidgetshttpuvhttricaigraphIRangesirlbaisobanditeratorsitertoolsjquerylibjsonliteKEGGRESTKernSmoothknitrlabelinglambda.rlaterlatticelazyevalleidenlifecyclelimSolvelistenvlmtestlpSolvemagickmagrittrMASSMatrixMatrixGenericsmatrixStatsmemoisemgcvmimeminiUImissForestmunsellnlmennlsopensslparallellypatchworkpbapplypcaMethodspheatmappillarpkgconfigplogrplotlyplyrpngpolyclippreprocessCoreprogressrpromisesproxypurrrquadprogquantmodR6randomForestrangerRANNrappdirsRColorBrewerRcppRcppAnnoyRcppArmadilloRcppEigenRcppHNSWRcppProgressRcppTOMLRCurlreshapereshape2reticulaterhdf5rhdf5filtersRhdf5librjsonrlangrmarkdownrngtoolsROCRrprojrootRSpectraRSQLitersvdRtsneS4ArraysS4VectorssassScaledMatrixscalesscattermoresctransformSeuratSeuratObjectshapeshinySingleCellExperimentsitmosnowsourcetoolsspspamSparseArraysparseMatrixStatsSpatialExperimentspatstat.dataspatstat.explorespatstat.geomspatstat.randomspatstat.sparsespatstat.univarspatstat.utilsstringistringrSummarizedExperimentsurvivalsystensortibbletidyrtidyselecttinytexTTRUCSC.utilsutf8uwotvctrsviridisLitewithrxfunXMLxtablextsXVectoryamlzlibbioczoo